US3785070A - Cushion insole for shoes - Google Patents

Cushion insole for shoes Download PDF

Info

Publication number
US3785070A
US3785070A US00302145A US3785070DA US3785070A US 3785070 A US3785070 A US 3785070A US 00302145 A US00302145 A US 00302145A US 3785070D A US3785070D A US 3785070DA US 3785070 A US3785070 A US 3785070A
Authority
US
United States
Prior art keywords
insole
section
insole section
shoe
heel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00302145A
Inventor
C Stafford
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3785070A publication Critical patent/US3785070A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/38Built-in insoles joined to uppers during the manufacturing process, e.g. structural insoles; Insoles glued to shoes during the manufacturing process

Definitions

  • a composite insole for shoes including a generally rigid upper layer and a resilient and compressible lower layer which underlies the upperlayer throughout and is laminated thereto. Spaced upper elements of a shoe are impressed through a binding element, attached to the insole, into the resilient and compressible lower layer in order to provide a substantially uninterrupted bottom binding surface to which a shoe outsole is attached. Heel attachment, without openings, and with a smooth, sculptured appearance for the shoe upper is also disclosed,
  • FIG. n We 70 FIG. I2
  • Ratholes or openings are also provided in the vicinity of thespaced upper shoe segments where it is not possible for the outsole to conform to the upper shoe segments.
  • the insole is notched to allow the spaced upper shoe segments to be hidden between the insole and outsole.
  • Insole notching in addition to being costly, has the disadvantage that it is impossible to provide any adjustment for the spaced upper shoe segments as is desirable during manufacture. In most cases; however, spaced upper shoe segments are attached between shoe insoles and outsoles without regard to the shoe appearance, comfort or upper shoe segment retention.
  • Another object of the present invention is to provide a new and improved shoe and insole device therefor which substantially reduces labor, material and manufacturing costs over shoes that are presently made.
  • Still a further object of the present invention is to provide a novel heel attachment means which avoids any openings between the heel, outsole and/or insole and provides a smooth and sculptured appearance for the shoe upper inthe area of the heel.
  • a shoe which includes a composite insole having a generally rigid upper layer and a resilient and compressible lower layer which are attached together and define an insole top surface, side surface and bottom surface, a binding element covering the insole side surface and extending at least partially across the top and bottom surfaces of the composite insole, a shoe body having at least one pair of circumferentially spaced upper elements in which the free ends of the upper elements are attached to the resilient and compressible lower layer to the rigid upper layer in a manner to cause the free ends of the upper elements to be compressed into the binding element and provide a substantially uninterrupted bottom binding surface, and an outsole attached to the binding and upper elements along the substantially uninterrupted bottom binding surface.
  • the shoe body Prior to attachment of the heel thereto, is partially compressed into the resilient and compressible lower layer, and then the heel is further impressed into the resilient and compressible lower layer and attached to the shoe body and insole in the heel area of the shoe body.
  • FIG. I is a side elevational view of an open work shoe which is constructed in accordance with the teachings of the present invention.
  • FIG. 2 is a bottom plan view of the shoe illustrated in FIG. 1 prior to the attachment of the heel and outsole thereto;
  • FIG. 3 is a sectional view taken along lines 33 of FIG. 1, but on an enlarged scale;
  • FIG. 4 is a sectional view taken along lines 4-4 of FIG. 1, but also on an enlarged scale;
  • FIG. 5 is a sectional view taken along lines 55 of FIG. 2, but also on an enlarged scale;
  • FIG. 6 is a sectional view taken along lines 66 of FIG. 2, but also on an enlarged scale;
  • FIG. 7 is a side elevational view of one form of composite insole device which is constructed in accordance with the teachings of the present invention.
  • FIG. 8 is a reduced top plan view of an elongated strip from which composite insole devices of the type shown in FIG. 7 are formed;
  • FIG. 9 is a bottom plan view of a modified form of composite insole device coming within the purview of the present invention.
  • FIG. 10 is a side elevational view of another modified form of composite insole device which is within the scope of the present invention.
  • FIG. 11 is a side elevational view of still another modified form of composite insole device.
  • FIG. 12 is yet another modified form of composite insole device which comes within the purview of the present invention.
  • FIG. 1 of the drawings illustrates an open work shoe construction in the form of circumferentially spaced upper elements or straps 12.
  • the shoe 10 also shows a closed work heel construction which is represented by the shoe upper heel area 14.
  • the closed heel work construction may be utilized in the open work shoe 10 or in closed work shoes where there are no circumferentially spaced upper elements defining openings therebetween.
  • the present invention is directed to the manner in which the upper shoe elements 12 are attached between an insole l6 and outsole 18, as well as to the manner in which the upper shoe heel area 14 is attached to the heel 20. Therefore, it will be appreciated that the specific design of the circumferentially spaced upper elements or straps 12 and the shoe upper heel area 14 forms no part of the present invention and may be varied to suit the aesthetic or design appearance of the shoe that is desire.
  • the present invention discloses a cushion insole device and the specific environment in which the cushion insole device is best utilized in a shoe.
  • FIG. 7 of the drawings The type of cushion insole device that is preferably constructed for the shoe 10 is shown in FIG. 7 of the drawings.
  • a cushion insole device 22 is shown with a generally rigid upper layer 24 and a resilient and compressible lower layer 26 which are laminated together and define an insole top surface 28, an insole side surface 30, and an insole bottom surface 32.
  • a suitable cement or adhesive 34 is utilized for laminating the upper and lower layers 24, 26 to each other.
  • the generally rigid upper layer 24 includes relatively thicker and rigid heel and toe portions 36, 38 respectively which are interconnected to an intermediate relatively thinner and flexible portion 40.
  • Complementary beveled surfaces 42, 44 respectively are utilized for providing a mating interconnected fit between the spaced portions 36, 38 and the intermediate interconnecting portion 40 of the upper layer 24.
  • Suitable cement or adhesive may be utilized for attaching the mating faces of the beveled surfaces 42, 44 and thus the portions 36, 38 and 40 to each other.
  • the relatively thicker and rigid heel and toe portions 36, 38 respectively may be formed from pressed fiberboard or the like whereas the thinner and flexible intermediate portion 40 can be formed from a less dense and more flexible fiberboard material. It will be appreciated that other materials having an equivalent function may be equally utilized.
  • the relatively thicker and rigid heel and toe portions 36, 28 respectively can be made from a leather material while the thinner and flexible intermediate portion 40 can be formed from a rubberized material or the like.
  • the term generally rigid layer" such as the layer 24 is intended to cover a construction where the layer is rigid throughout as well as a form where the layer includes rigid heel and toe portions 36, 38 which are connected to an intermediate flexible portion 40 as is illustrated in FIG. 7 of the drawings.
  • An insole with an intermediate flexible portion, as in the area where the ball-of-the-foot is located, is particularly useful in high heel shoe construction of the type represented by the shoe 10 in FIG. 1 of the drawings.
  • the resilient and compressible lower layer 26 of the insole device 22 is preferably formed from a foam rubber material which has a plurality of pores or openings therethrough.
  • the one-piece substantially uniform-inthickness lower layer 26 underlies each of the portions of the upper layer or insole section 24 throughout including the outermost periphery of each of the portions. This is an important feature of the present invention as it will become useful in providing a shoe with good comfort, appearance and shoe upper or strap retention.
  • the lower layer or insole section 26 has a thickness which is preferably at least generally the same as the upper layer or insole section 24 or even slightly larger than the upper layer or insole section 24 as is illustrated in FIG. 7 of the drawings. It has been found that a thickness for the lower layer or insole section 26 which is generally the same as or even slightly larger than the upper layer or insole section 24 will provide the desired comfort, appearance and strap retention. As will be apparent, a lesser thickness may, of course, be utilized, providing that the desired characteristics are achieved.
  • the resilient and compressible lower layer or insole section 26 conforms to the undersurface of the upper layer or insole section 24 in the intermediate flexible portion 40 as well as the rigid heel and toe portions 36, 38. Thus, there are no gaps or openings between the upper and lower layers 24, 26, so
  • the cushion insole devices 22 are preferably formed from an elongated strip 46 which has heel, toe, and ball-of-the-foot bands 48, 50 and 52 from which the cushion insole devices 22 are stamped or cut. It will be appreciated'that the elongated strip 46 will have a one-piece band of resilient and compressible material (not shown) underlying the heel, toe and ball-of-thefoot bands 48, 50 and 52 respectively in order to form the cushion insole devices 22 as illustrated in FIG. 7.
  • the cushion insole devices may be cut and stacked separately or an elongated strip 46 can be sent to the shoe manufacturer who will cut or stamp the cushion insole devices 22 therefrom. It will be appreciated that the size and outline configuration of the cushion insole device 22 and the length and width of the elongated strip 46 may be varied to suit the particulars desired.
  • the shoe outsole 18 is illustrated as conforming to the undersurface of the shoe insole 16 with upper or strap elements 12 therebetween.
  • the upper or strap elements 12 would normally tend to cause undesirable bulging of the shoe outsole 18 making it difficult to attach the outsole 18 to the insole 16, particularly in the area between the upper or strap elements 12. This is the result of the inability of the rigid leather material outsole 18 to bend or conform to small spaces or openings between adjacently positioned spaced upper or strap elements 12.
  • ratholes" or openings are formed in the vicinity of the upper or strap elements 12 where it is not possible for the outsole 18 to conform to theupper or strap el ements 12 or the area therebetween.
  • the upper or strap elements 12 are not securely retained in place, and thus can become easily displaced from the shoe 1,0. I
  • the shoe incorporates the cushion insole device 22 in a novel and unique way which will now be described.
  • a binding element 54 is usually attached to the insole along its side surface and at least partially across the top and bottom surfaces thereof. This is perhaps best illustrated in FIGS. 2-6 of the drawings where the binding element 54 is illustrated as being attached to the cushion insole 22 along the top, side and bottom surfaces thereof.
  • the binding element 54 is normally made from the same type of material from which the'upper or strap elements 12 are made.
  • the free ends 56 of the upper or strap elements 12 are'attached by staples 58 or other suitable fastener which extends through the resilient and compressible lower layer or insole section 26 into the upper layer or insole section 24.
  • the fasteners 58 penetrate the binding element 54 so as to tie is covered by the free ends 56 of the upper or strap element 12. Because the lower layer 26 of the cushion insole device '22 is resilient and compressible, the free ends 56 of the upper or strap elements 12 together with the section 60 of the binding element 54 which is attached to the bottom surface of the insole device 22 are upwardly displaced into the lower layer 26. This is best illustrated in FIG.
  • FIG. 4 is a view taken along lines 4-4 of FIG. 1 where the upper or strap element 12 is positioned between the insolel6 and outsole 18 in the area of the insole where the cushion insole device 22 is provided with a thinner and and flexible intermediate portion 40.
  • the upper or strap elements 12 when attached by the fasteners 58 to the intermediate portion 40 of the cushion insole device 22, causes the binding element 54 to be angularly disposed while being filled out by the resilient and compressible lower layer 26 so as to give an apparent thickness for the binding element 54 throughout the intermediate thinner and flexible portion 40 of the upper layer 24 which is similar to the more thicker and rigid heel and toe portions 36, 38 respectively of the upper layer 24.
  • the exposed binding 54 will be filled out not only in theheel and toe portions 36, 38 respectively, but also in the intermediate thinner and flexible portion 40 of the upper layer 24.
  • the free ends 56 of the upper or strap elements 12 are compressed by fasteners 56 into the lower layer 26 so as to avoid bulging while the free ends 56 of the upper or strap elements 12 are also securely retained in place by the fasteners 56 and the attachment between the insole 16 and outsole 18.
  • Each of these features of the present invention is aided by havthe strap and binding elements 12, 54 respectively to the upper layer'or'insole section 24in the area which ing the resilient and compressible layer 26 of the cushion insole device compressed generally throughout the area of the binding element 54. This is shown in FIGS.
  • the free ends 56 of the upper or strap elements 12 are generally in line with the non-engaged lower sections 60 of the binding element 54 since the fasteners 58 force the free ends 56 of the upper or strap elements 12 together with the lower sections 60 of the binding element 54 covered or superimposed by the free ends 56 to a position where the free ends 56 are generally in line with the non-engaged lower sections 60 of the binding element.
  • This relationship can further be enhanced by separating the non-engaged areas of the lower sections 60 from those portions of the lower sections 60 which are superimposed by the free ends 56 of the upper or strap elements 12 and engaged by the fasteners 58. This is conveniently accomplished by cutting the binding element 54 along the lower section 60 thereof adjacent the free ends 56 of the upper or strap elements 12. These separations or cuts as at 62 in FIG.
  • FIG. 6 of the drawings depicts the in-line position of the lower section 60 of the binding element 54 on one side of the shoe with the impressed free end 56 and super-imposed lower section 60 of the binding elements 54 on the other side of the shoe.
  • the cuts or openings 62 in addition to permitting the lowersection 60 of the binding element 54 to be generally in line with the free ends 56 of the upper or strap elements 12, also allow adhesive material or cement to flow therein to aid in retaining the free ends 56 of the upper or strap elements 12 when the outsole 18 is cemented or adhesively attached thereto.
  • the lower layer or insole section 26 of the cushion insole device 22 within the confines of the binding element 54 eliminates the need of a separate filler element which is presently utilized to fill up the space between the insole and outsole that is caused by the attachment of the upper or strap elements 12 between the insole and outsole 16, 18 respectively.
  • the lower layer or insole section 26, principally within the confines of the binding 54 but also extending into the binding, serves as a cushion to provide comfort during walking.
  • the ball-of-the-foot intermediate portion 40 will provide more cushioning for the wearer since it is thin and flexible as compared with the rigid and thicker portions 36,
  • the cushioning qualities of the cushion insole device may be enhanced by the selection of particular materials for this purpose.
  • the lower layer or insole section 26 is made from a cellular material, air trapped in the cells of the cellular material by the sealed condition between the outsole l8 and substantially uninterrupted bottom binding surface also will enhance the cushioning qualities of the shoe.
  • FIGS. 1-2 and 5 of the drawings illustrate the manner in which a heel 20 may be applied to the upper heel area 14 of a shoe.
  • the free end 64 of the upper heel area 14 is attached by the fasteners 66 through the resilient and compressible lower layer or insole section 26 into the upper layer or insole section 24.
  • the fasteners 66 thereby impress the free end 64 of the upper heel area 14 into the resilient and compressible lower layer or insole section 26. In so doing, a partial compression occurs, and this aids in drawing the material from which the upper heel area 14 is made into a smooth and sculptured appearance around and over the cushion insole 22.
  • the heel 20 When the heel 20 is attached to the upper layer 24 of the cushion insole 22, the heel 20 is further impressed into the resilient and compressible lower layer 26 of the cushion insole 22 and provides a good heel seat which avoids any openings between the heel 20 and the insole and outsole 16, 18 respectively in the FIG. 1 shoe embodiment.
  • the fasteners 66 are attached to the free end 64 of the upper heel area 14 inwardly of the binding element 54 so as to allow the resilient and compressible material of the lower layer 26 which extends outwardly of the fasteners 66 to fill up the lower part of the upper heel shoe area 14 in the area-of juncture thereof with the heel 20 so as to cover up or close any gaps or openlngs.
  • FIGS. 9-12 for various modified embodiments of the present invention.
  • similar reference numerals with alphabetical suffixes will be used to designate like parts in the various embodiments.
  • a cushion insole device 22a is shown with the resilient and compressible lower layer or insole section 26a underlying and laminated to the rigid heel section 36a of the upper layer or insole section 24a.
  • the cushion insole 22a is particularly useful for open heel and side, open work shoes and the like.
  • This embodiment makes it apparent that the lower layer or insole section of the cushion insole device can underlie throughout, including the outermost periphery thereof, at least one, but not necessarily all of the portions of the upper layer.
  • the cushion insole device 22b illustrated in FIG. 10 of the drawings is similar to the embodiment shown in FIG. 7 with one exception.
  • a second resilient and compressible layer 68 is superimposed upon and laminated to the upper layer 24 so as to avoid the necessity of using a filler element inside the shoe as is common.
  • this embodiment also provides added cushioning qualities.
  • the cushion insole device 220 illustrated in FIG. 11 of the drawings is similar to the FIG. 7 embodiment, but also shows the possibility of causing an adhesive 70 to flow into the cells of the lower layer or insole section 26c.
  • the adhesive 70 may be caused to flow into the cells of the cellular material during lamination or can be initially deposited as a heat activated adhesive into the cells of the lower layer or insole section 26c prior to the attachment of the upper and lower layer 24c, 26c to each other, through the use of heat and pressure.
  • the lower layer or insole section 26d has provided in the space thereof which is laminated to the undersurface of the upper layer or insole section 24d, a plurality of depressions 72 which will form trapped air pockets when the upper and lower layer 24d, 26d of the cushion insole device 22d are laminated together. Added cushioning qualities to the insole will thereby be provided.
  • the present invention has achieved its objectives in providing a shoe and insole device therefor which enhances the comfort, appearance and construction of shoes over what is presently known or available.
  • a shoe insole comprising an upper insole section including relatively thicker and rigid spaced heel and toe portions than an intermediate thinner and flexible ball portion, and a resilient and compressible lower insole section which underlies the upper section throughout including the outermost periphery thereof said lower insole section being made from a one-piece, substantially uniform thickness material which is laminated to the upper section and which has a predetermined thickness relative to the portions of the upper insole section to provide a greater resilient cushioning support in the intermediate thinner and flexible ball portion of the upper insole section than in the thicker and rigid spaced heel and toe portions, said lower insole section being partially compressed into laminated relationship to the upper insole section in order to allow said lower insole section to resiliently support the heel, toe and ball portions of the upper insole section.

Abstract

A composite insole for shoes is disclosed including a generally rigid upper layer and a resilient and compressible lower layer which underlies the upper layer throughout and is laminated thereto. Spaced upper elements of a shoe are impressed through a binding element, attached to the insole, into the resilient and compressible lower layer in order to provide a substantially uninterrupted bottom binding surface to which a shoe outsole is attached. Heel attachment, without openings, and with a smooth, sculptured appearance for the shoe upper is also disclosed.

Description

States atent [1 Stafford 51 Jan.15,1974
[ CUSHION lNSOLE FOR SHOES [76] Inventor: Cleo Stafford, 705 W. 10th St.,
Corning, Ark. 72422 [22] Filed: Oct. 30, 1972 [21] Appl. No.: 302,145
Related U.S. Application Data [62] Division of Ser. No. 190,497, Oct 19, 1971, Pat. No.
[52] U.S. Cl. 36/44, 36/1l.5
[51] Int. Cl. A43b 13/38, A43b 3/12 [58] Field of Search 36/44, 28, 30 R, 36/11.5
[56] References Cited UNITED STATES PATENTS 3,449,844 6/1969 Spence 36/44 1,923,169 8/1933 Simmons 36/44 Clark 36/44 Fello 36/l 1.5
Primary Examiner-Patrick D. Lawson Attorney-Michael Kovac 5 7 ABSTRACT A composite insole for shoes is disclosed including a generally rigid upper layer and a resilient and compressible lower layer which underlies the upperlayer throughout and is laminated thereto. Spaced upper elements of a shoe are impressed through a binding element, attached to the insole, into the resilient and compressible lower layer in order to provide a substantially uninterrupted bottom binding surface to which a shoe outsole is attached. Heel attachment, without openings, and with a smooth, sculptured appearance for the shoe upper is also disclosed,
9 Claims, 12 Drawing Figures PATENTEDJRM 15 m4 3.785.070
sum 2 OF 2 FIG. IO
FIG. n We 70 FIG. I2
CUSHION INSOLE FOR SHOES This is a division of Co-pending Pat. Application Ser. No. 190,497, now US. Pat. No. 3,707,784.
SUMMARY OF THE INVENTION Substantial manufacturing difficulties, with attendant economic and aesthetic disadvantages, are presently encountered in the manufacture of womens strap shoes; open toe, side and heel shoes; and other open work shoes. Utilizing present manufacturing knowledge, it is difficult to attach spaced upper shoe segments between a shoe insole and outsole so as to provide a comfortable and goodlooking shoe with the spaced upper shoe segments securely retained in place. It will be appreciated that the outsole, because it is made of a relatively rigid material, is not capable of conforming to the shoe insole with the spaced upper shoe segments attached to the undersurface thereof. As a result, the spaced upper shoe segments cause undesirable bulging of the shoe outsole making it difficult to attach the outsole to the insole in the area between the spaced upper shoe segments. Ratholes or openings are also provided in the vicinity of thespaced upper shoe segments where it is not possible for the outsole to conform to the upper shoe segments. These limitations make for an uncomfortable and undesirable looking shoe in which the spaced upper shoe segments are capable of being easily displaced from the shoe.
In some cases, the insole is notched to allow the spaced upper shoe segments to be hidden between the insole and outsole. Insole notching, in addition to being costly, has the disadvantage that it is impossible to provide any adjustment for the spaced upper shoe segments as is desirable during manufacture. In most cases; however, spaced upper shoe segments are attached between shoe insoles and outsoles without regard to the shoe appearance, comfort or upper shoe segment retention.
Even where the bulging and openings can be avoided, as in insole notching, the exposed bindings which are used in open work shoes can exhibit wrinkles, creases and unevenness. It has been the practice to add thickened and rigid portions to the insoles in an attempt to avoid these difficulties, however, this practice has not totally solved the problem and in addition, has resulted in the use of more material and added manufacturing costs.
It is also the current practice to add a filler element to the undersurface of the insole within the binding element before the outsole is attached to the insole. This is done to fill up the space between the insole and the outsole, which is caused by the attachment of added material to segments between the insole and outsole, as well as to provide added comfort to the shoe. It will be apparent that additional labor and manufacturing expense is involved in this practice, and the added comfort is small in relation to the added cost.
The attachment of heels to shoes, whether open or closed work is involved, has also not been entirely satisfactory. In some shoe designs, the outsole extends partially beneath the heel, and this makes it difficult to attach the heel to the insole without any openings in the area where the heel overlies the outsole. In other instances, the location of the heel in relation to shoe straps creates similar problems. Where this happens, it is generally the practice to crimp or deform the outsole in an attempt to cover up the opening. As will be appreciated, hand labor used for this crimping or deforming operation can only attempt to cover up the opening. This hand operation cannot provide a good heel seat which is desirable both from the standpoint of avoiding any openings between the heel, outsole and/or insole as well as providing a smooth and sculptured appearance for the shoe upper in the area of the heel.
From the above, it will be appreciated that the present manufacture of open work shoes, and in some cases, closed work shoes as well, has a number of long standing problems. The present invention seeks to provide a simple, practical and economical solution to the aforementioned problems of shoe design and manufacture which have continued to cause difficulties in shoe appearance, comfort and construction.
Accordingly, it is an object of the present invention to provide a new and improved shoe and insole device which overcomes the aforementioned difficulties.
More specifically, it is an object of the present invention to provide a new and improved shoe and insole device therefor in which the spaced upper shoe segments are attached between the shoe insole and outsole in a manner to provide a comfortable and good appearing shoe with the spaced upper shoe segments securely retained in place.
Another object of the present invention is to provide a new and improved shoe and insole device therefor which substantially reduces labor, material and manufacturing costs over shoes that are presently made.
Still a further object of the present invention is to provide a novel heel attachment means which avoids any openings between the heel, outsole and/or insole and provides a smooth and sculptured appearance for the shoe upper inthe area of the heel.
These and other objects and advantages of the present invention are attained by providing a shoe which includes a composite insole having a generally rigid upper layer and a resilient and compressible lower layer which are attached together and define an insole top surface, side surface and bottom surface, a binding element covering the insole side surface and extending at least partially across the top and bottom surfaces of the composite insole, a shoe body having at least one pair of circumferentially spaced upper elements in which the free ends of the upper elements are attached to the resilient and compressible lower layer to the rigid upper layer in a manner to cause the free ends of the upper elements to be compressed into the binding element and provide a substantially uninterrupted bottom binding surface, and an outsole attached to the binding and upper elements along the substantially uninterrupted bottom binding surface. In attaching a heel to a shoe, the shoe body, prior to attachment of the heel thereto, is partially compressed into the resilient and compressible lower layer, and then the heel is further impressed into the resilient and compressible lower layer and attached to the shoe body and insole in the heel area of the shoe body.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. I is a side elevational view of an open work shoe which is constructed in accordance with the teachings of the present invention;
FIG. 2 is a bottom plan view of the shoe illustrated in FIG. 1 prior to the attachment of the heel and outsole thereto;
FIG. 3 is a sectional view taken along lines 33 of FIG. 1, but on an enlarged scale;
FIG. 4 is a sectional view taken along lines 4-4 of FIG. 1, but also on an enlarged scale;
FIG. 5 is a sectional view taken along lines 55 of FIG. 2, but also on an enlarged scale;
FIG. 6 is a sectional view taken along lines 66 of FIG. 2, but also on an enlarged scale;
FIG. 7 is a side elevational view of one form of composite insole device which is constructed in accordance with the teachings of the present invention;
FIG. 8 is a reduced top plan view of an elongated strip from which composite insole devices of the type shown in FIG. 7 are formed;
FIG. 9 is a bottom plan view of a modified form of composite insole device coming within the purview of the present invention;
FIG. 10 is a side elevational view of another modified form of composite insole device which is within the scope of the present invention;
FIG. 11 is a side elevational view of still another modified form of composite insole device; and
FIG. 12 is yet another modified form of composite insole device which comes within the purview of the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS While the present invention has particular utility in connection with womens strap shoes; open toe, side and heel shoes; and other open work shoes, it also has usefulness in the attachment of heels to shoe bodies, whether of the open or closed work variety. This will become apparent from the discussion that is to follow.
Reference is first made to the shoe 10 shown in FIG. 1 of the drawings which illustrates an open work shoe construction in the form of circumferentially spaced upper elements or straps 12. The shoe 10 also shows a closed work heel construction which is represented by the shoe upper heel area 14. The closed heel work construction may be utilized in the open work shoe 10 or in closed work shoes where there are no circumferentially spaced upper elements defining openings therebetween.
The present invention is directed to the manner in which the upper shoe elements 12 are attached between an insole l6 and outsole 18, as well as to the manner in which the upper shoe heel area 14 is attached to the heel 20. Therefore, it will be appreciated that the specific design of the circumferentially spaced upper elements or straps 12 and the shoe upper heel area 14 forms no part of the present invention and may be varied to suit the aesthetic or design appearance of the shoe that is desire.
As has been previously discussed, it has not been possible under current manufacturing techniques to provide a comfortable and good-looking appearance for an open work shoe with the circumferentially spaced upper elements of the open work shoe securely retained in place. In order to achieve this, the present invention discloses a cushion insole device and the specific environment in which the cushion insole device is best utilized in a shoe.
The type of cushion insole device that is preferably constructed for the shoe 10 is shown in FIG. 7 of the drawings. There, a cushion insole device 22 is shown with a generally rigid upper layer 24 and a resilient and compressible lower layer 26 which are laminated together and define an insole top surface 28, an insole side surface 30, and an insole bottom surface 32. A suitable cement or adhesive 34 is utilized for laminating the upper and lower layers 24, 26 to each other. The generally rigid upper layer 24 includes relatively thicker and rigid heel and toe portions 36, 38 respectively which are interconnected to an intermediate relatively thinner and flexible portion 40. Complementary beveled surfaces 42, 44 respectively are utilized for providing a mating interconnected fit between the spaced portions 36, 38 and the intermediate interconnecting portion 40 of the upper layer 24. Suitable cement or adhesive (not specifically shown) may be utilized for attaching the mating faces of the beveled surfaces 42, 44 and thus the portions 36, 38 and 40 to each other.
The relatively thicker and rigid heel and toe portions 36, 38 respectively may be formed from pressed fiberboard or the like whereas the thinner and flexible intermediate portion 40 can be formed from a less dense and more flexible fiberboard material. It will be appreciated that other materials having an equivalent function may be equally utilized. For example, the relatively thicker and rigid heel and toe portions 36, 28 respectively can be made from a leather material while the thinner and flexible intermediate portion 40 can be formed from a rubberized material or the like. It is to be understood that the term generally rigid layer" such as the layer 24 is intended to cover a construction where the layer is rigid throughout as well as a form where the layer includes rigid heel and toe portions 36, 38 which are connected to an intermediate flexible portion 40 as is illustrated in FIG. 7 of the drawings. An insole with an intermediate flexible portion, as in the area where the ball-of-the-foot is located, is particularly useful in high heel shoe construction of the type represented by the shoe 10 in FIG. 1 of the drawings.
The resilient and compressible lower layer 26 of the insole device 22 is preferably formed from a foam rubber material which has a plurality of pores or openings therethrough. The one-piece substantially uniform-inthickness lower layer 26 underlies each of the portions of the upper layer or insole section 24 throughout including the outermost periphery of each of the portions. This is an important feature of the present invention as it will become useful in providing a shoe with good comfort, appearance and shoe upper or strap retention.
It will be noted that the lower layer or insole section 26 has a thickness which is preferably at least generally the same as the upper layer or insole section 24 or even slightly larger than the upper layer or insole section 24 as is illustrated in FIG. 7 of the drawings. It has been found that a thickness for the lower layer or insole section 26 which is generally the same as or even slightly larger than the upper layer or insole section 24 will provide the desired comfort, appearance and strap retention. As will be apparent, a lesser thickness may, of course, be utilized, providing that the desired characteristics are achieved.
It is to be noted that the resilient and compressible lower layer or insole section 26 conforms to the undersurface of the upper layer or insole section 24 in the intermediate flexible portion 40 as well as the rigid heel and toe portions 36, 38. Thus, there are no gaps or openings between the upper and lower layers 24, 26, so
as to enable the lower layer 26 to resiliently support the upper layer 24 throughout.
As seen in FIG. 8 of the drawings, the cushion insole devices 22 are preferably formed from an elongated strip 46 which has heel, toe, and ball-of-the- foot bands 48, 50 and 52 from which the cushion insole devices 22 are stamped or cut. It will be appreciated'that the elongated strip 46 will have a one-piece band of resilient and compressible material (not shown) underlying the heel, toe and ball-of- thefoot bands 48, 50 and 52 respectively in order to form the cushion insole devices 22 as illustrated in FIG. 7.
For shipping purposes, the cushion insole devices may be cut and stacked separately or an elongated strip 46 can be sent to the shoe manufacturer who will cut or stamp the cushion insole devices 22 therefrom. It will be appreciated that the size and outline configuration of the cushion insole device 22 and the length and width of the elongated strip 46 may be varied to suit the particulars desired.
With a cushion insole device 22 of the type described and illustrated. it is possible to successfully employ the cushion sole device 22 in a novel and unique way in the shoe 10. To understand how this is done, reference is made to the following description in conjunction with FIGS. 1-6 of the drawings.
As illustrated in FIG. 1 of the drawings, the shoe outsole 18 is illustrated as conforming to the undersurface of the shoe insole 16 with upper or strap elements 12 therebetween. As will be appreciated, the upper or strap elements 12 would normally tend to cause undesirable bulging of the shoe outsole 18 making it difficult to attach the outsole 18 to the insole 16, particularly in the area between the upper or strap elements 12. This is the result of the inability of the rigid leather material outsole 18 to bend or conform to small spaces or openings between adjacently positioned spaced upper or strap elements 12. In the usual shoe construction, ratholes" or openings are formed in the vicinity of the upper or strap elements 12 where it is not possible for the outsole 18 to conform to theupper or strap el ements 12 or the area therebetween. In addition, the upper or strap elements 12 are not securely retained in place, and thus can become easily displaced from the shoe 1,0. I
To overcome these limitations, the shoe incorporates the cushion insole device 22 in a novel and unique way which will now be described.
In exposed or open work shoes, a binding element 54 is usually attached to the insole along its side surface and at least partially across the top and bottom surfaces thereof. This is perhaps best illustrated in FIGS. 2-6 of the drawings where the binding element 54 is illustrated as being attached to the cushion insole 22 along the top, side and bottom surfaces thereof. The binding element 54 is normally made from the same type of material from which the'upper or strap elements 12 are made.
In attaching the upper or strap elements 12 to the cushion insole device 22.,the free ends 56 of the upper or strap elements 12 are'attached by staples 58 or other suitable fastener which extends through the resilient and compressible lower layer or insole section 26 into the upper layer or insole section 24. Preferably, the fasteners 58 penetrate the binding element 54 so as to tie is covered by the free ends 56 of the upper or strap element 12. Because the lower layer 26 of the cushion insole device '22 is resilient and compressible, the free ends 56 of the upper or strap elements 12 together with the section 60 of the binding element 54 which is attached to the bottom surface of the insole device 22 are upwardly displaced into the lower layer 26. This is best illustrated in FIG. 4 of the drawings where it can be seen that the fasteners 58 cause the free ends 56 of the upper or strap elements and the lower section 60 of the binding element 54 to be compressed into the lower layer 26. As will be appreciated, this can reduce or eliminate entirely strap bulging and openings adjacent the straps.
It will also be noted in FIG. 4 of the drawings that the opposite ends of the cushion insole device 22 curve generally upwardly. As will be appreciated, FIG. 4 is a view taken along lines 4-4 of FIG. 1 where the upper or strap element 12 is positioned between the insolel6 and outsole 18 in the area of the insole where the cushion insole device 22 is provided with a thinner and and flexible intermediate portion 40. The upper or strap elements 12, when attached by the fasteners 58 to the intermediate portion 40 of the cushion insole device 22, causes the binding element 54 to be angularly disposed while being filled out by the resilient and compressible lower layer 26 so as to give an apparent thickness for the binding element 54 throughout the intermediate thinner and flexible portion 40 of the upper layer 24 which is similar to the more thicker and rigid heel and toe portions 36, 38 respectively of the upper layer 24. In the past, it has generally been the practice to add a separate thicker part to an open work insole in an attempt to avoid wrinkles, creases, and unevenness in the exposed binding. It will be apparent that it was not possible to achieve this particularly in the relatively thinner and flexible intermediate area. Thus a relatively poor appearing shoe binding for open work shoes has been accepted as fact based on current manufacturing techniques.
With the present invention; however, the exposed binding 54 will be filled out not only in theheel and toe portions 36, 38 respectively, but also in the intermediate thinner and flexible portion 40 of the upper layer 24. Additionally, the free ends 56 of the upper or strap elements 12 are compressed by fasteners 56 into the lower layer 26 so as to avoid bulging while the free ends 56 of the upper or strap elements 12 are also securely retained in place by the fasteners 56 and the attachment between the insole 16 and outsole 18. Each of these features of the present invention is aided by havthe strap and binding elements 12, 54 respectively to the upper layer'or'insole section 24in the area which ing the resilient and compressible layer 26 of the cushion insole device compressed generally throughout the area of the binding element 54. This is shown in FIGS. 3-4 of the drawings which illustrate sections taken along various portions of the shoe as at lines 3-3 and 4-4. It will be noted in FIG. 4 that while the free ends 56 are initially compressed into the lower layer 26 by the fasteners 56, the unengaged sections 60 of the binding element 54 as seen in FIG. 3 are compressed as the 54. This is made possible'by virtue of the fact that the free ends 56 of the upper or strap elements 12, when initially compressed by the fasteners 56 into the resilient and compressible lower layer 26 as illustrated in FIG. 4 of the drawings, assume a position which is generally in line with the non-engaged lower section 60 of the binding element '54 so as to provide a substantially uninterrupted bottom binding surface to which the outsole 18 may be attached. Additional compression of the lower layer 26 in the area of the free ends 56 may occur as the result of the outsole 18 being attached thereto, depending on the in-line nature of the initially compressed free ends 56 with the non-engaged lower section 60 of the binding element 54.
The free ends 56 of the upper or strap elements 12 are generally in line with the non-engaged lower sections 60 of the binding element 54 since the fasteners 58 force the free ends 56 of the upper or strap elements 12 together with the lower sections 60 of the binding element 54 covered or superimposed by the free ends 56 to a position where the free ends 56 are generally in line with the non-engaged lower sections 60 of the binding element. This relationship can further be enhanced by separating the non-engaged areas of the lower sections 60 from those portions of the lower sections 60 which are superimposed by the free ends 56 of the upper or strap elements 12 and engaged by the fasteners 58. This is conveniently accomplished by cutting the binding element 54 along the lower section 60 thereof adjacent the free ends 56 of the upper or strap elements 12. These separations or cuts as at 62 in FIG. 2 of the drawings make it possible for the lower sections 60 which are not engaged by the free ends 56 of the upper or strap elements 12 to have more freedom in assuming an in-line position relative to the free ends 56 as well as provide selective displacement thereof. This facilitates the attachment of the outsole 18 to the free ends 56 of the upper or strap elements 12 and the non-engaged lower sections 60 of the binding element, as well as gives the appearance that the upper or strap elements 12 are buried into the binding element 54. In this connection, reference is made to FIG. 6 of the drawings which depicts the in-line position of the lower section 60 of the binding element 54 on one side of the shoe with the impressed free end 56 and super-imposed lower section 60 of the binding elements 54 on the other side of the shoe. The cuts or openings 62, in addition to permitting the lowersection 60 of the binding element 54 to be generally in line with the free ends 56 of the upper or strap elements 12, also allow adhesive material or cement to flow therein to aid in retaining the free ends 56 of the upper or strap elements 12 when the outsole 18 is cemented or adhesively attached thereto.
The lower layer or insole section 26 of the cushion insole device 22 within the confines of the binding element 54 eliminates the need of a separate filler element which is presently utilized to fill up the space between the insole and outsole that is caused by the attachment of the upper or strap elements 12 between the insole and outsole 16, 18 respectively. Further, the lower layer or insole section 26, principally within the confines of the binding 54 but also extending into the binding, serves as a cushion to provide comfort during walking. In this latter regard, it will be appreciated that the ball-of-the-foot intermediate portion 40 will provide more cushioning for the wearer since it is thin and flexible as compared with the rigid and thicker portions 36,
38. The cushioning qualities of the cushion insole device may be enhanced by the selection of particular materials for this purpose. In addition, it is within the framework of the present invention as described above to cement or otherwise adhesively attach the outsole 18 to the substantially uninterrupted bottom binding surface so as to provide a sealed condition. Where the lower layer or insole section 26 is made from a cellular material, air trapped in the cells of the cellular material by the sealed condition between the outsole l8 and substantially uninterrupted bottom binding surface also will enhance the cushioning qualities of the shoe.
Reference is now made to FIGS. 1-2 and 5 of the drawings which illustrate the manner in which a heel 20 may be applied to the upper heel area 14 of a shoe. The free end 64 of the upper heel area 14 is attached by the fasteners 66 through the resilient and compressible lower layer or insole section 26 into the upper layer or insole section 24. The fasteners 66 thereby impress the free end 64 of the upper heel area 14 into the resilient and compressible lower layer or insole section 26. In so doing, a partial compression occurs, and this aids in drawing the material from which the upper heel area 14 is made into a smooth and sculptured appearance around and over the cushion insole 22. When the heel 20 is attached to the upper layer 24 of the cushion insole 22, the heel 20 is further impressed into the resilient and compressible lower layer 26 of the cushion insole 22 and provides a good heel seat which avoids any openings between the heel 20 and the insole and outsole 16, 18 respectively in the FIG. 1 shoe embodiment. Preferably, the fasteners 66 are attached to the free end 64 of the upper heel area 14 inwardly of the binding element 54 so as to allow the resilient and compressible material of the lower layer 26 which extends outwardly of the fasteners 66 to fill up the lower part of the upper heel shoe area 14 in the area-of juncture thereof with the heel 20 so as to cover up or close any gaps or openlngs.
Reference is now made to FIGS. 9-12 for various modified embodiments of the present invention. In these embodiments, similar reference numerals with alphabetical suffixes will be used to designate like parts in the various embodiments.
In FIG. 9 of the drawings, a cushion insole device 22a is shown with the resilient and compressible lower layer or insole section 26a underlying and laminated to the rigid heel section 36a of the upper layer or insole section 24a. The cushion insole 22a is particularly useful for open heel and side, open work shoes and the like. This embodiment makes it apparent that the lower layer or insole section of the cushion insole device can underlie throughout, including the outermost periphery thereof, at least one, but not necessarily all of the portions of the upper layer.
The cushion insole device 22b illustrated in FIG. 10 of the drawings is similar to the embodiment shown in FIG. 7 with one exception. A second resilient and compressible layer 68 is superimposed upon and laminated to the upper layer 24 so as to avoid the necessity of using a filler element inside the shoe as is common. Obviously, this embodiment also provides added cushioning qualities.
The cushion insole device 220 illustrated in FIG. 11 of the drawings is similar to the FIG. 7 embodiment, but also shows the possibility of causing an adhesive 70 to flow into the cells of the lower layer or insole section 26c. The adhesive 70 may be caused to flow into the cells of the cellular material during lamination or can be initially deposited as a heat activated adhesive into the cells of the lower layer or insole section 26c prior to the attachment of the upper and lower layer 24c, 26c to each other, through the use of heat and pressure.
In the embodiment depicted in FIG. 12 of the drawings, the lower layer or insole section 26d has provided in the space thereof which is laminated to the undersurface of the upper layer or insole section 24d, a plurality of depressions 72 which will form trapped air pockets when the upper and lower layer 24d, 26d of the cushion insole device 22d are laminated together. Added cushioning qualities to the insole will thereby be provided.
From the foregoing, it will now be appreciated that the present invention has achieved its objectives in providing a shoe and insole device therefor which enhances the comfort, appearance and construction of shoes over what is presently known or available.
I claim:
1. A shoe insole comprising an upper insole section including relatively thicker and rigid spaced heel and toe portions than an intermediate thinner and flexible ball portion, and a resilient and compressible lower insole section which underlies the upper section throughout including the outermost periphery thereof said lower insole section being made from a one-piece, substantially uniform thickness material which is laminated to the upper section and which has a predetermined thickness relative to the portions of the upper insole section to provide a greater resilient cushioning support in the intermediate thinner and flexible ball portion of the upper insole section than in the thicker and rigid spaced heel and toe portions, said lower insole section being partially compressed into laminated relationship to the upper insole section in order to allow said lower insole section to resiliently support the heel, toe and ball portions of the upper insole section.
2. The device as defined in claim 1 wherein the upper surface of each of the portions of the upper insole section are generally in line with each other.
3. The device as defined in claim 2 wherein the undersurface of the lower insole section is generally parallel with the upper surfaces of the upper insole section.
4. The device as defined in claim 1 wherein the intermediate portion of the upper insole section is formed from the lower insole section and extends upwardly therefrom between the rigid portions and is attached thereto.
5. The device as defined in claim 1 wherein the lower insole section is laminated to the upper insole section by means of an adhesive.
6. The device as defined in claim 5 wherein the lower insole section is made from cellular material and the adhesive is caused to flow into the cells of the cellular material.
7. The device as defined in claim 6 wherein heat activated adhesive is pre-applied to the cells of the lower insole section.
8. The device as defined in claim 1 wherein the lower insole section has depressions formed therein which extend from one face thereof, said lower insole section having the face into which the depressions are formed laminated to the upper insole section to provide trapped air pockets.
9. The device as defined in claim 1 and further including a second layer of resilient and compressible material superimposed on the upper insole section.

Claims (9)

1. A shoe insole comprising an upper insole section including relatively thicker and rigid spaced heel and toe portions than an intermediate thinner and flexible ball portion, and a resilient and compressible lower insole section which underlies the upper section throughout including the outermost periphery thereof said lower insole section being made from a one-piece, substantially uniform thickness material which is laminated to the upper section and which has a predetermined thickness relative to the portions of the upper insole section to provide a greater resilient cushioning support in the intermediate thinner and flexible ball portion of the upper insole section than in the thicker and rigid spaced heel and toe portions, said lower insole section being partially compressed into laminated relationship to the upper insole section in order to allow said lower insole section to resiliently support the heel, toe and ball portions of the upper insole section.
2. The device as defined in claim 1 wherein the upper surface of each of the portions of the upper insole section are generally in line with each other.
3. The device as defined in claim 2 wherein the undersurface of the lower insole section is generally parallel with the upper surfaces of the upper insole section.
4. The device as defined in claim 1 wherein the intermediate portion of the upper insole section is formed from the lower insole section and extends upwardly therefrom between the rigid portions and is attached thereto.
5. The device as defined in claim 1 wherein the lower insole section is laminated to the upper insole section by means of an adhesive.
6. The device as defined in claim 5 wherein the lower insole section is made from cellular material and the adhesive is caused to flow into the cells of the cellular material.
7. The device as defined in claim 6 wherein heat activated adhesive is pre-applied to the cells of the lower insole section.
8. The device as defined in claim 1 wherein the lower insole section has depressions formed therein which extend from one face thereof, said lower insole section having the face into which the depressions are formed laminated to the upper insole section to provide trapped air pockets.
9. The device as defined in claim 1 and further including a second layer of resilient and compressible material superimposed on the upper insole section.
US00302145A 1971-10-19 1972-10-30 Cushion insole for shoes Expired - Lifetime US3785070A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US19049771A 1971-10-19 1971-10-19
US30214572A 1972-10-30 1972-10-30

Publications (1)

Publication Number Publication Date
US3785070A true US3785070A (en) 1974-01-15

Family

ID=26886172

Family Applications (1)

Application Number Title Priority Date Filing Date
US00302145A Expired - Lifetime US3785070A (en) 1971-10-19 1972-10-30 Cushion insole for shoes

Country Status (1)

Country Link
US (1) US3785070A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3841003A (en) * 1974-04-08 1974-10-15 Susan Shoe Ind Ltd Manufacture of shoes
US5797862A (en) * 1994-11-21 1998-08-25 Lamont; William D. Medical boot for patient with diabetic foot
US20080163511A1 (en) * 2007-01-08 2008-07-10 Dean Norman C Footwear outsole construction
US10806633B2 (en) 2014-08-27 2020-10-20 Ehob, Inc. Fiber filled therapeutic cushioning boot

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US455305A (en) * 1891-07-07 Boot or shoe
US1923169A (en) * 1931-02-05 1933-08-22 United Shoe Machinery Corp Shoe sole and method of making the same
US2526940A (en) * 1948-12-20 1950-10-24 Fello Joseph Sandal with strap-receiving, channeled sole
US3449844A (en) * 1967-05-05 1969-06-17 Spenco Corp Protective inner sole

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US455305A (en) * 1891-07-07 Boot or shoe
US1923169A (en) * 1931-02-05 1933-08-22 United Shoe Machinery Corp Shoe sole and method of making the same
US2526940A (en) * 1948-12-20 1950-10-24 Fello Joseph Sandal with strap-receiving, channeled sole
US3449844A (en) * 1967-05-05 1969-06-17 Spenco Corp Protective inner sole

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3841003A (en) * 1974-04-08 1974-10-15 Susan Shoe Ind Ltd Manufacture of shoes
US5797862A (en) * 1994-11-21 1998-08-25 Lamont; William D. Medical boot for patient with diabetic foot
US20080163511A1 (en) * 2007-01-08 2008-07-10 Dean Norman C Footwear outsole construction
US7707746B2 (en) 2007-01-08 2010-05-04 Dean Norman C Footwear outsole construction
US10806633B2 (en) 2014-08-27 2020-10-20 Ehob, Inc. Fiber filled therapeutic cushioning boot
US11779493B2 (en) 2014-08-27 2023-10-10 Ehob, Inc. Therapeutic cushioning boot

Similar Documents

Publication Publication Date Title
US7047669B2 (en) High heel shoe cushion system
US6061929A (en) Footwear sole with integrally molded shank
US7526880B2 (en) Cushioned insole
US20020088145A1 (en) Shoe construction
US4455767A (en) Shoe construction
US4348820A (en) Shoe structure
KR890012584A (en) Sneakers with foam windows
US4501076A (en) Shoe construction
US2715285A (en) Laminated sole structure
US3398469A (en) Cushioned shoe innersole construction
US8291616B2 (en) Insole having a transparent portion and a sock liner portion
US5644856A (en) Wedge slipper
US3785070A (en) Cushion insole for shoes
US2725645A (en) Outer shoe sole unit
US3707784A (en) Cushion insole for shoes
US2388744A (en) Shoe construction
US2707340A (en) Weather protected rubber sole shoe
US2575783A (en) Beaded mock welting for mckay type footwear
US2994136A (en) Shoe rear quarter and adjacent parts
US2092533A (en) Manufacture of shoes
US2238274A (en) Strap sandal and insole therefor
US2434995A (en) Platform type shoe
JP2004180746A (en) Shoe
US2226392A (en) Shoe and insole therefor
US2410530A (en) Shoe construction